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Percolation on trees as a Brownian excursion: From Gaussian to Kolmogorov-Smirnov
to exponential statistics
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We calculate the distribution of the size of the percolating cluster on a tree in the subcritical, critical, and
supercritical phase. We do this by exploiting a mapping between continuum trees and Brownian excursions,
and arrive at a diffusion equation with suitable boundary conditions. The exact solution to this equation can be
conveniently represented as a characteristic function, from which the following distributions are clearly visible:
Gaussian (subcritical), Kolmogorov-Smirnov (critical), and exponential (supercritical). In this way we provide
an intuitive explanation for the result reported in Botet and Płoszajczak, Phys. Rev. Lett. 95, 185702 (2005) for
critical percolation.
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I. INTRODUCTION

Mappings that connect seemingly unrelated models are
regularly used in statistical physics. They not only facilitate
calculations but provide additional intuition about the original
models. Well-known examples include the Ising model inter-
pretation for a lattice gas [1], the bosonic interpretation for the
partitioning of an integer into summands [2], or the Coulomb
gas interpretation for the eigenvalues of certain random
matrices [3]. In practice, the coincidence in distribution of
an observable in one model may spur the search for a
mapping to its counterpart observable in another model. In
this Rapid Communication, we adopt this route inspired by
the Kolmogorov-Smirnov (KS) distribution, which has been
noticed in a variety of contexts. It is the distribution of a
test statistic for comparing between empirical and theoretical
distribution functions, and is well understood to describe the
absolute maximum value of a Brownian bridge [4]. With this
insight, it can be related to other Brownian observables [5].
More surprisingly, it is the distribution of the integrated mean-
squared fluctuations of a periodic Brownian signal [6], and
therefore also accounts for the roughness of a one-dimensional
periodic Edwards-Wilkinson interface in the steady state [7]. It
also describes the sizes of clusters in a mean-field aggregation
process [8].

This Rapid Communication focuses on the finite-size scaled
distribution of percolating cluster sizes on a Bethe lattice at
the critical point, first computed by Botet and Płoszajczak
[8,9] to be the KS distribution. We demonstrate that there is
indeed a connection to Brownian motions, thereby obtaining
a more intuitive understanding of their result. In this way, we
demystify the coincidence in distribution and bring the result
into the existing fold of knowledge about Brownian motions
and associated observables [5,10].

II. SETTING UP THE PROBLEM

We consider site percolation on a finite Bethe lattice of
size L, coordination number z and site occupation probability
p, with critical occupation probability pc = 1/(z − 1) [11].
There is a distinguishable site at the center, called the root, from
which distances or “heights” to other sites can be measured.

With a subsequent mapping to Brownian excursions in mind,
it is convenient to define the root to be at h = 1. Neighboring
sites in the first generation are then at h = 2, sites at the
boundary at h = L, etc. We say that the system percolates
if there is at least one path of occupied sites from the root to
any boundary site. The percolating cluster, containing the root,
can be thought of as a rooted tree of fixed height.

The size S of the percolating cluster is the number of sites
forming the cluster that contains the root (which may include
more than one path to the boundary). If the system does not
percolate, we set S = 0 for convenience.

In what follows, we will be concerned with the distribution
of the size of the percolating cluster given that the system
percolates,

P(s) ≡ Prob[S = s : S > 0]. (1)

In particular, we will direct our attention to the limit of large
system sizes L � 1. A well-normalized limiting distribution
for the rescaled percolating cluster size will therefore depend
on how S scales with L for different values of p.

III. MAPPING TO BROWNIAN EXCURSION

The well-known depth-first search [12] (also known as
a Harris walk) gives a bijection between rooted trees and
excursions. Here we make use of an asymptotic version of
this technique for L � 1 to map the percolation problem to a
Brownian excursion with specific boundary conditions.

Consider a realization of the percolating cluster, traversed
in depth-first search order starting from the root at time i = 0
(see Fig. 1). Each edge is traversed exactly twice, once in
each direction, and the pairs [i,h(i)] form a positive walk of
length 2S. To have a well-defined excursion that terminates
at h = 0 once the tree has been traversed and not before, an
up-step and a down-step is appended to the beginning and end
of the path. For large L, the walk [i,h(i)] can be approximated
by a Brownian excursion. If we further think of percolation
on the Bethe lattice as a Galton-Watson branching process
with binomial offspring distribution X ∼ B(z − 1,p), then the
drift v, diffusion constant D, and initial condition x0 of the
associated excursion can be determined simply by inspecting
and matching some well-known results. For example, the
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FIG. 1. The correspondence between trees and positive paths in
a system of size L = 4. The percolating cluster has size S = 7, and
the associated walk has duration T = 2S = 14. Left: The percolating
cluster, traversed in depth-first search order, as indicated by the arrows
next to the edges. Right: The associated path, with an initial and final
step appended so that the walk does not return to h = 0 before the
entire tree has been traversed.

probability for an unbiased excursion to reach level k before
0, starting from x0, is x0/k (the gambler’s ruin probability);
while the probability for a critical branching process to survive
at least k generations is 2/(Var[X]k) [13,14]. This result,
together with the matching of the first two cumulants of the
total population of a subcritical branching process [15] with
those of the corresponding Brownian excursion, leads to the
identifications:

v = E[X] − 1

Var[X]
, D = 1

Var[X]
, x0 = 2

Var[X]
, (2)

where E[X] = (z − 1)p and Var[X] = (z − 1)p(1 − p). This
is in agreement with the known rescaling of the so-called
contour process [16]. In addition, the system is conditioned
to percolate, so that the associated walk must reach height
h(j ) = L for some 0 < j < 2S before returning to the origin
for the first time at i = 2S. In summary, the large L limit
of the walk [i,h(i)] corresponds to a Brownian excursion of
maximum height L, drift v, and diffusion constant D. The
(random) duration T of this Brownian excursion equals 2S by
construction.

Proper convergence of a positive walk to a Brownian
excursion is formally only reached after rescaling lengths
appropriately, but we will only take this step at the very end of
our calculations, once the scaling of S with L, as a function of
p, has been calculated. Formal proofs of convergence in similar
setups can be found in the related literature on continuum
random trees. For instance, Aldous [12] shows that if certain
families of trees are constrained to have a fixed large number
of nodes, then its associated Harris walks converge to the
standard Brownian excursion of length 1; while Le Gall [17]
also considers constraints related to the maximum height. In
both cases it is shown that, under certain mild conditions, all
families of trees (i.e., all lattices) lead to the same universal
results.

We have thus set up a mapping between percolation in a
finite Bethe lattice and a Brownian excursion with a reflecting
boundary, and explicitly related their parameters, Eq. (2). In
what follows, we will compute the distribution of T in the
Brownian excursion setting, and show that the results agree,
as expected, with simulations of percolation in a Bethe lattice.
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FIG. 2. A Brownian excursion, conditioned to reach x(t) = L

for some 0 < t < T = T1 + T2, decomposed into (i) the path from
x = 0 that reaches x = L for the first time, and (ii) the return path
from x = L back to x = 0.

IV. BROWNIAN EXCURSION

The Brownian excursion of fixed height L corresponding
to our problem can be decomposed into two paths (see Fig. 2):
(i) a first path from the origin x(0) = 0 at time t = 0 to the
boundary x(T1) = L, taking time T1, and (ii) a return path from
the reflecting boundary x(T1) = L to the origin x(T ) = 0,
taking time T2 = T − T1. Note that the first path involves a
conditional exit at x = L such that that boundary is effectively
absorbing for t < T1. Readers experienced with Brownian
processes will recognize T1 as the hitting time to reach L

of a three-dimensional Bessel process [5].

A. Diffusion equation with drift

The distributions of T1 and T2 are most conveniently
calculated by working with the Laplace transform of the
diffusion equation with drift:

[−D∂xx + v∂x + λ]φ̂(x,λ) = δ(x − x0), (3)

where φ(x,λ) is the Laplace transform with respect to time
of the density function with initial condition x(0) = x0.
According to the usual recipe [18], this equation is solved
with combinations of exponentials respecting the boundary
conditions, and fluxes are computed at the relevant boundaries.
These calculations furnish the Laplace transformed first
passage densities j1(λ) and j2(λ) associated with T1 and T2.

B. First path: A + A

To calculate T1 for the first path of the decomposition,
absorbing boundaries are required at both at x = 0 and x = L,

φ̂AA(0,λ) = 0, (4)

φ̂AA(L,λ) = 0, (5)

together with a conditional exit x = L. φ̂AA satisfying the
absorbing boundaries takes the form

φ̂AA(x,λ) = 2ev(x−x0)/2D

ρ sinh(ρL/2D)

× sinh(ρx0/2D) sinh[ρ(L − x)/2D], (6)
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where ρ := √
v2 + 4λD. The conditional exit probability at

x = L is [18]

Prob(exit at x = L) = 1 − e−vx0/D

1 − e−Lv/D
(7)

so that the flux at the boundary x = L is

j1(λ) = lim
x0→0

−Dφ̂′
AA(L,λ)

Prob(exit at x = L)
(8)

= ρ

v

sinh(Lv/2D)

sinh(ρL/2D)
. (9)

C. Return path: A + R

To calculate T2 for the second path of the decomposition,
an absorbing boundary is required at x = 0,

φ̂AR(0,λ) = 0, (10)

and a Dirac δ pulse is injected at x = L as an initial condition,
which in Laplace space is equivalent to the boundary condition

−vφ̂AR(L,λ) + Dφ̂′
AR(L,λ) = 1. (11)

φ̂AR satisfying these boundary conditions is

φ̂AR(x,λ) = 2ev(x−L)/2D sinh(ρx/2D)

ρ cosh(ρL/2D) − v sinh(ρL/2D)
, (12)

so that the flux at the boundary x = 0 is

j2(λ) = Dφ̂′
AR(0,λ) (13)

= ρe−Lv/2D

ρ cosh(ρL/2D) − v sinh(ρL/2D)
. (14)

D. Entire excursion

The total time to go from the origin to the boundary at x =
L, and then from the boundary back to the origin is T = T1 +
T2. Since T1 and T2 are independent, the Laplace transform of
the density of the total time T is the product

j (λ) = j1(λ)j2(λ)

= ρ2

v

sinh(Lv/2D)

sinh(ρL/2D)

× e−Lv/2D

ρ cosh(ρL/2D) − v sinh(ρL/2D)
. (15)

E. Critical case

Critical percolation with p = pc = 1/(z − 1) maps to
Brownian motion with zero drift. Taking the limit v → 0 in
Eq. (15),

j
(c)
1 (λ) = L

√
λ/D

sinh(L
√

λ/D)
, (16)

j
(c)
2 (λ) = 1

cosh(L
√

λ/D)
, (17)

j (c)(λ) = 2L
√

λ/D

sinh(2L
√

λ/D)
. (18)
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FIG. 3. The rescaled distribution of the percolating cluster size,
for different values of z and p and fixed system size L = 103.
Simulations (colored symbols) agree with theory (black line), which
is obtained via numerical inversion of Eq. (15).

Interestingly, j
(c)
1 and j (c) are Laplace transforms of the same

KS distribution on different scales. j
(c)
2 is also the Laplace

transform of many observables of Brownian motions (see [5]
for a review).

F. General case

For general choices of v (or, equivalently, p), the full
solution in Eq. (15) cannot be inverted explicitly, and one
must resort to numerical inversion. Figure 3 shows a family
of percolating cluster size distributions, all rescaled by their
means.

The distributions are independent of coordination number
z as expected, but clearly depend on p. For p �= pc (and fixed
L), the distributions can be thought of as flowing away from
the nontrivial fixed point, represented by the KS distribution
(middle, blue curve).

To better understand these flows towards trivial fixed points
(in the language of renormalization-group) for p → 0 and
p → 1, it is convenient to standardize the distributions to zero
mean and unit standard deviation. Since Eq. (15) is the moment
generating function for T , these cumulants can be constructed
as usual by differentiating once (first moment) or twice (second
moment) with respect to λ, and taking λ → 0. For the mean
μ := 〈T 〉 we find

μ
v2

D
= F(Lv/D), (19)

where the scaling function

F(x) = ex − 3 + 2x

ex − 1
(20)

behaves as ex for x � 1, x2 for x → 0, and x for x � −1.
For fixed v and D, the scaling behavior of μ is therefore

μ =

⎧⎪⎨
⎪⎩

D
v2 e

Lv/D, L � 1,v > 0
2

3D
L2, L � 1,v = 0

2
|v|L, L � 1,v < 0.

(21)
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FIG. 4. Centered skewness κ3 and kurtosis κ4 − 3 for the stan-
dardized solution described by G(k; Lv). Solid circles from left
to right correspond to the fixed points: Gaussian (subcritical), KS
(critical), Exponential (supercritical).

Expressions can likewise be obtained for the standard deviation
σ :=

√
〈T 2〉 − 〈T 〉2 (not shown).

Given μ and σ , we arrive at a standardized characteristic
function G(k; Lv/D) from Eq. (15) by (i) replacing λ → −ik,
to change from Laplace to Fourier space, (ii) multiplying by
exp(−ikμ) to translate the distribution to zero mean, and (iii)
replacing k → k/σ , to scale the distribution to unit standard
deviation. Note that the ratio μ/σ is a function of Lv/D

alone. Thus, G(k; Lv/D) describes a family of probability
distributions parametrized by Lv/D.

As a result of this standardization, all distributions
G(k; Lv/D) have zero mean and unit standard deviation.
However, higher cumulants κn will depend on Lv/D. These
differences can be visualized by plotting the skewness κ3

versus the kurtosis κ4 − 3, as depicted in Fig. 4. Three regimes
are particularly noteworthy: (i) Lv/D → −∞ (subcritical
fixed point), (ii) Lv/D → 0 (critical fixed point), and (iii)
Lv/D → ∞ (supercritical fixed point). With the help of
Mathematica, we can obtain full expressions for (κ3,κ4 − 3)
as a function of Lv/D. In the three above regimes these reduce
to (i) (2,6), (ii) (4

√
10/7,36/7), and (iii) (0,0), corresponding

to exponential, KS, and Gaussian distributions, respectively.
These three fixed points are marked in Fig. 4 as solid circles.
A heuristic explanation for the sub- and supercritical limits
is as follows: the overall behavior of T is dominated by T2

[T1 is insensitive to the sign of v, which can be seen from

the fact that (6) is an even function of v]. When v < 0,
T2 is approximately the ballistic travel time from x = L to
x = 0, with a Gaussian correction coming from diffusion.
When v > 0, T2 is dominated by the rare event that the
motion escapes the drift that keeps returning it to the reflecting
boundary at x = L. This rare event process is consistent with
exponential tails.

We briefly comment on how our method differs from that
of Botet and Płoszajczak [8], the full details of which are
presented in [9]. In their method, a recursion is set up between
successive generations of the Bethe lattice, encoding the statis-
tical weights of configurations conditioned to percolate. The
recursion relation is then Laplace transformed and rescaled
by mean percolating cluster size, to yield expressions which
are then analyzed asymptotically in the limit of large system
size for the critical case p = pc [19]. In contrast, our method
makes use of a passage from continuum trees to Brownian
excursions at the starting point of the calculation, such that
the parameters of the Bethe lattice are reincorporated into the
diffusion constant and drift of the resulting motion. This makes
the subsequent analysis arguably more intuitive, and Eq. (15)
gives the entire cluster size distribution for all regimes from the
solution of a diffusion problem with drift. Our approach should
be universal across different types of trees, in the sense that
the fixed point distributions (suitably rescaled) do not depend
on underlying microscopic details.

V. CONCLUSION

We have calculated the distribution of the size of the
percolating cluster on a tree by interpreting the problem as
a type of Brownian excursion. In this way, we give an intuitive
explanation for the coincidence in distribution (first noted in
[8]) with other observables associated with Brownian motions
[5]. The analysis can be extended off criticality by adding a
drift term to the associated diffusion equation. The resulting
flows in the space of distributions can be captured by tracking
the skewness and kurtosis. Our exact calculation makes an
investigation of the various regimes possible in full detail. We
expect that such mappings can be used to investigate further
properties of branching processes.
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